Detecting Horizontal Gene Transfer between Closely Related Taxa
نویسندگان
چکیده
Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.
منابع مشابه
A resolution comparison of horizontal and vertical magnetic transfer functions
The main goal of the present study is to identify characteristics of the inter-station horizontal magnetic responses and the vertical magnetic data, as two types of magnetotelluric transfer functions, in the modeling procedure. Through consideration of model responses and two-dimensional inversion of synthetic data, sensitivity of the data components in detecting different geophysical structure...
متن کاملBiased gene transfer mimics patterns created through shared ancestry.
In phylogenetic reconstruction, two types of bacterial tyrosyl-tRNA synthetases (TyrRS) form distinct clades with many bacterial phyla represented in both clades. Very few taxa possess both forms, and maximum likelihood analysis of the distribution of TyrRS types suggests horizontal gene transfer (HGT), rather than an ancient duplication followed by differential gene loss, as the contributor to...
متن کاملA Complex Distribution of Elongation Family GTPases EF1A and EFL in Basal Alveolate Lineages
Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alve...
متن کاملMolecular Identification of Rare Clinical Mycobacteria by Application of 16S-23S Spacer Region Sequencing
Objective(s) In addition to several molecular methods and in particular 16S rDNA analysis, the application of a more discriminatory genetic marker, i.e., 16S-23S internal transcribed spacer gene sequence has had a great impact on identification and classification of mycobacteria. In the current study we aimed to apply this sequencing power to conclusive identification of some Iranian clinical ...
متن کاملPhylogenetic relationships among prokaryotic and eukaryotic catalases.
Seventy-four catalase protein sequences, including 29 bacterial, 8 fungal, 7 animal, and 30 plant sequences, were compiled, and 70 were used for phylogenetic reconstruction. The core of the resulting tree revealed unique, separate groups of plant and animal catalases, two groups of fungal catalases, and three groups of bacterial catalases. The only overlap of kingdoms occurred within one branch...
متن کامل